The historical course of China’s media reform is coincidental with the intrinsic logic of the transformation in national political ideology from contradiction theory to economy-centric theory (Li and Hu, 2013). However, this situation does not mean that political determinism would suffice to explain the China’s media reform. The transformation towards media groups did not result in mere innovation in the size, structure and managerial ideal of the media industries but also the ‘self-consciousness’ of actively promoting economic gains and the tendency to transform capitalism, ownership and other concepts into the reasonable kernel of media reform (Li and Hu, 2013). These have transcended far beyond the scope of what ‘political correctness’ can explain.

To provide a quantitative measure of (GGGGCC)n hexanucleotide expansion in C9ORF72, 100 ng of genomic DNA was amplified by touchdown PCR using primers shown in Supplemental Table 2, in a 28-μL PCR reaction consisting of 0.2 mM each of 7-deaza-2-deoxyguanine triphosphate (deaza-dGTP) (NEB), dATP, dCTP, and dTTP, 7% DMSO, 1× Q-Solution, 1× Taq PCR buffer (Roche), 0.9 mM MgCl2, 0.7 μM reverse primer (4 GGGGCC repeats with an anchor tail), 1.4 μM 6FAM fluorescently labeled forward primer, and 1.4 μM anchor primer corresponding to the anchor tail of reverse primer (Supplemental Table 2). During the PCR, the annealing temperature was gradually decreased from 70°C and 56°C in 2°C increments with a 3-minute extension time for each cycle. The PCR products were purified by QiaQuick PCR purification kit (Qiagen) and analyzed using an ABI3730 DNA Analyzer and Peak Scanner Software v1.0 (Life Technologies).
Lín dá líkai gai dìqu hòu, wo yùjiànle an, yigè báirén nu, céngjing gen wo de péngyou hé fángdong ha wéi. Ha wéi de qián shìyou ken·kèlisidì ansen (Ken Christianson) yijing kaishile yigè míng wèi “dí huìjiàn rén” de zìyóu liútong bàozhi, wèi you xìngqù huìjiàn qíta danda di danshen rénshì. Zhèyàng jiù hé ha wéi liánxìle. Ta huàn you yìyù zhèng. Ta dí gege yijing shìtú ba ta zhì yú jingshénbìng yuàn, dàn ta yijing táotuole. Zhè shì yigè you xiyin lì de gùshì. Wo chéngle an dì péngyou, hen kuài ta de liànrén hé wèihunfu. Yijiubaliù nián xiàtian, wo dài ta qù dong jie wojia.
Wo huì wánquán tanbái de shuo zhège haochù jiùshì baobèi, bùshì làngmàn, ye bùshì hunyin de shùfù. Dangrán huì you yigè nurén zài nàli, yexu yigè nurén, hái méiyou zhaodào “zhèngquè de rén”, dàn danxin nàgè shíjian yijing bù fù cúnzàile chéngwéi muqin de jihuì. Zhè zhong lèixíng de rén kenéng duì wo suo tígong de dongxi gan xìngqù wo dangrán huì chéngdan wo fùmu zérèn de gongpíng fèn'é.

It is said that even in his lifetime a few of Wang’s characters or his signature were priceless. Down through the ages, aspiring students of that most basic yet highest art in China, calligraphy, have copied and preserved traces of his style. The most famous example of his writing is the Lantingxu (“Preface to the Poems Composed at the Orchid Pavilion”), which recorded a famous gathering of some 42 literary figures during the Spring Purification Festival of 353 ce to compose poems and enjoy the companionship of wine. Wang’s work was written in the xingshu, or “running script,” and has become the model for that particular style of writing. Among other generations of calligraphers in the family, Wang Xianzhi (344–386 ce), the youngest son of Wang Xizhi, was the most famous.
wo mùqián de wèntí de genyuán shì wo shìtú dìngyì shénme yàng de hunyin yinggai shì shénme. Zài zhège shídài, nánxìng bù yidìng shì jiatíng zhong de yangjia húkou zhe. Women de hòu gongyè jingjì rìyì shòudào fùnu de pèi dài. Xuéxiào, chúfáng yòngjù hé qíta xiàndài shenghuó bian lì ye qingxiàng yú shi fùnu zài chuántong de jiatíng zhufù de juésè zhong you suo rong yú, dàn you yigè lìwài. Dangrán, zhège lìwài shì xiaohái de muqin. Zài cuìruò de suìyuè li, wéirào értóng jiànlì wendìng de jiazhang jiégòu shì jiéhun de yigè hen hao de liyóu. Ta yi héli de fangshì jiang fùmu bang zài yiqi, zhè zhong guanxì duì er tóng youlì.
Guanli gongyù de yi wèi péngyou jinggào wo yào xiaoxin, yunxu bùshì zuhù de rén qùchú zuhù de wùpin. Kenéng zhèngzài qisù. Dang zhulì'an huílái de shíhòu, wo qing ta qianle yi zhang zhi, shàngmiàn xiezhe “wo yijing cóng a shén lìhé bi'er mài gao gé xuke dì nàgè dìfang, ba gongyù li de ji gè sùliào dàizi cóng gongyù li qu zoule.” Rènshì a shén lì, wo yiwéi ta de bànlu huì jùjué zhège yaoqiú. Wo zhunbèi paishè ta xiédài sùliào dài de gongyù de zhàopiàn. Bùguò, zhulì'an gei wo méiyou máfan. Ta hen kuài jiù qianshule zhè fèn shengmíng.
June 2018: I gave a talk in the College of Mathematical Science at University of Electronic Science and Technology of China (UESTC), Chengdu, China. The title is ‘‘Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach’’. See the slides here. The pre-print of the paper is here. Will also be giving this talk at Chongqing University on Jul. 13.
Hao xiaoxi shì, ta xiànzài zài fùguó yínháng youyi fèn gongzuò, yigè mei xiaoshí zhifù 15 meiyuán. Ta cóng wo nàli toule qián lái zhifù yínháng fèiyòng. Ta ye zhèngzài jìnrù wojia de lóu xià danwèi, bìng you jinjí yuánzhù zhifù yigè yuè de zujin hé sunhui yajin. Wo zuò chule yigè juédìng. Wo keyi xiàng meiguó yínháng bàogào qizhà xíngwéi bìng shouhuí zijin, ye kenéng jiang xila sòng dào jianyù, fouzé wo keyi jieshòu dàoqiè, xiwàng yiqiè shùnlì. Wo xuanzéle hòu zhe.
By the end of 2012, the circulation and advertising revenues of the Fujian press industry declined substantially, indicating its entry into a ‘cold winter’. Secretary-General Xi Jinping delivered the ‘8•19’ speech in 2014. Subsequently, Fujian’s press groups began to receive local fiscal support, actually ‘reaching a consensus’ and advancing media convergence. In 2014 alone, the Xiamen Daily Group gained substantial support from the municipal government, thereby pioneering the establishment of a ‘central control platform of converged media’ and a new media centre, which has been followed by several other press groups in Fujian.

Rán'ér, ji gè yuè lái, wo dasuàn jià gei ta. Ta huì lái dào wo zài shèngbaoluó dì dìfang, women jingcháng huì zuò'ài. Ránhòu wo huì zài wo de xiezuò xiàngmù shàng gongzuò, ér an baochíle gè zhong gè yàng de fangshì. Women de guanxì fasheng de dì yigè lièfèng fasheng zài an kaishi zài túshu guan yù dào yigè nánrén de chéngshì zhouwéi. Ta zài zhengbiàn shuo wo bùpèi ta. Tamen kànle yixià zài yigè jiào pínqióng de shèngbaoluó fùjìn de ha wéi de fángzi, bìng juédìng bù héshì. an gei wo yigè zuìhòu tong atum, wo bùdé bùbi zhè gèng hao. Zhè sìhu shì duì wo de yiban tàidù. Suoyi jiéhun bèi gezhìle.


Zuòwéi ben famíng de jiéguo, rénlèi xiànzài you yi zhong fangshì lái jì zhù yi zhè zhong fangshì jìlù de suoyou shuo chu de cíyu. Jìyì shì yongjiu de hé jingquè de. Quedian shì dàliàng de fúhào. Mei gè cíyu xuyào yigè xiangyìng de shumiàn yuyán. Rúguo you yi wàn gè shuo chu de cí, xuyào xiangtóng shùliàng de shuxie fúhào. Zhè shì yigè jianjù de rènwù, xuéxí yuèdú hé xie zhème duo bùtóng de fúhào.
Yóuyú mei gè fúhào dàibiao yigè chúncuì de sixiang yuánsù, zhèxie fúhào biàn chéng yu shuo chu de cí xiangguan lián. Shèjí wùli duìxiàng de cíyu keyi yóu zài shìjué shàng lèisì yú duìxiàng de xiàntiáo tú biaoshì. Lìrú, yigè yuánquan kenéng dàibiao tàiyáng; huòzhe, yinwèi tàiyáng meitian shàngsheng yicì, ta ye kenéng biaodá “tian” de gàiniàn. Cí de chouxiàng yìyì de yinjié zài yuyin shàng yu biaoshì wùli duìxiàng de cí xiangtóng, kenéng shiyòng xiangtóng de shìjué fúhào. Zuìzhong shumiàn yuyán huòdéle zài yuyán zhong zhaodào de mei gè cí de fúhào. Zhè shì biaoyì wénzì: Mei gè fúhào dàibiao yigè xiangfa, huàn jù huàshuo, yigè cí.

Jan. 2019, Check out the new paper: ‘‘Learning Nonlinear Mixtures: Identifiability and Algorithm’’. In this work we push forward parameter identifiability of linear mixture models (LMM) to nonlinear ones. LMM finds many applications in blind source separation-related problems, e.g., hyperspectral unmixing and topic mining. In practice, however, the mixing process is hardly linear. This work studies a fundamental question: if there is nonlinearity imposed upon an LMM, can we still identify the underlying parameters of interest? The interesting observation of our work is that: under some conditions, nonlinearity can be effectively removed and the problem will boil down to an LMM identification problem — for which we have tons of tools to handle.
Note: It is the best if you could elaborate in your email which part of my research interests you, and why. I generally do not respond to emails that look just following a template and vaguely claim interested in one of my research areas listed above. I should mention that the Pacific Northwest is a very nice region to live in. Check out some pictures of Oregon and neighboring regions. The Getty Images website has collections of beautiful pictures of places in this region, for example:
Zài qízhong yigè changhé, wo gàosù xila, wo shì tú zhaodào yigè méiyou jiéhun de nurén, yào hé wo yiqi shenghuó. Ta de guanzi bèi shùfù hòu, ta wúlì. Rán'ér, dang women jiéhun de shíhòu, women yijing jiandan dì wéi ta zuòle yigè shoushù lái niuzhuan shuluanguan jiéza. Zì nà yilái, zhè xiàng jìshù jìnbùle. Xila zài hùliánwang shàng jìnxíng sousuo, zài fóluólidá zhou de kèlì er wò tè zhaodàole yigè dìfang, jiang yi 10,000 meiyuán jìnxíng nìzhuan chéngxù. Ta rènwéi, boshìdùn kexué gongsi de jiànkang baoxian kenéng huì zhifù bùfèn chéngben. Rúguo you xìngqù, wo jiang bùdé bù zhifù qíyú fèiyòng.
Because glutamate receptor homeostasis is maintained in part through vesicle trafficking (33, 34) and we had observed that 3K3A-APC exerted potent effects on autophagosomal and lysosomal pathways in iMNs, we determined if 3K3A-APC could normalize glutamate receptor levels in ALS patient–derived motor neurons. Indeed, 3K3A-APC reduced the number of NR1+ punctae on C9ORF72 and sporadic ALS iMN neurites to control iMN levels (Figure 4, A–C, and Supplemental Figure 4, A and B; 2 controls, 2 C9ORF72 ALS, and 6 sporadic ALS patients). Using surface protein biotinylation, we were able to purify surface-bound proteins from iMNs (Figure 4, F–I, and Supplemental Figure 4I). Immunoblottting confirmed that 3K3A-APC reduced membrane-bound NR1 levels on C9ORF72 and sporadic ALS iMNs (Figure 4, F–I, and Supplemental Figure 4, J–M), but not control iMNs (Supplemental Figure 4, N–Q). 3K3A-APC treatment did not alter total NR1 levels, but specifically reduced the amount of surface-bound NR1 on ALS iMNs (Supplemental Figure 4, J–M and R–W). 3K3A-APC also did not alter total NR1 levels in control iMNs (Supplemental Figure 4, X–Z). Thus, 3K3A-APC normalizes NR1 levels on C9ORF72 and sporadic ALS iMNs.
Hb9::RFP+ iMNs appeared between days 13 and 16 after retroviral transduction. RepSox was removed on day 17 and the survival assay was initiated. For the glutamate treatment condition, 10 μM glutamate was added to the culture medium on day 17 and removed after 12 hours. Cells were then maintained in N3 medium with neurotrophic factors without RepSox. Cultures were treated with 10 nM inactive or active 3K3A-APC after glutamate was removed. The inactive and active 3K3A-APC were maintained for the remainder of the experiment and replenished every other day. For treatment with rapamycin, 10 μM DMSO or rapamycin (Sigma-Aldrich, R8781-200UL) was initiated after the 12-hour glutamate treatment was completed. For PAR1 and PAR2 antagonist treatment, cultures were cotreated with 3 μM PAR1 or PAR2 antagonist starting after glutamate treatment. For PAR1, PAR2, and PAR3 ASO treatment, the cultures were pretreated one time with 9 μM ASOs for 72 hours before the pulse glutamate treatment. PAR1 and PAR2 antagonists were purchased from Tocris (RWJ56110, catalog 2614 and AC55541, catalog 3369, respectively). PAR1, PAR2, and PAR3 ASO gapmers were designed and produced by IDT; they contained 2′-O-Me and phosphorothioate linkage modifications. Longitudinal tracking was performed by imaging neuronal cultures in a Nikon Biostation CT or Molecular Devices ImageExpress once every 24 to 72 hours starting on day 17. Tracking of neuronal survival was performed using SVcell 3.0 (DRVision Technologies) or ImageJ. Neurons were scored as dead when their soma was no longer detectable by RFP fluorescence. All neuron survival assays were performed at least twice, with equal numbers of neurons from 3 individual replicates from one of the trials being used for the quantification shown. All trials quantified were representative of other trials of the same experiment. When iMNs from multiple independent donors were combined into one survival trace in the Kaplan-Meier plots for clarity, this is noted in the figure legend.
April 2019: Our paper (with Kejun) ‘‘Detecting Overlapping and Correlated Communities: Identifiability and Algorithm’’ has been accepted to ICML 2019! This work proposes a new community detection method that has correctness guarantees for identifying the popular mixed membership stochastic blockmodel (MMSB). Many existing methods rely on the existence of ‘‘pure nodes’’ (i.e., nodes in a network that only belong to one community) to identify MMSB. This assumption may be a bit restrictive. Our method leverage convex geometry-based matrix factorization to establish identifiability under much milder conditions.
Dangrán, zhè bi qián méiyou zhifù. Lìngwài yibai yuán, wo anpáile yi míng jing zhang de fùshou san tianhòu, a shén lì you zhoumò qingli ta de cáiwù. Xingqí'èr, jing zhang de dàibiao zài gongyù ménkou fale yigè tongzhi, ràng zu kè èrshísì xiaoshí banjia. Yi tianhòu, tamen huí dàole gongyù. Méiyourén zài nàli dàibiaomen liú xiàle yigè shuomíng, shuo zu kè xiànzài yijing héfa quzhúle. Rúguo you rén huí dào gongyù, zhè jiang bèi rènwéi shì rùqin de.
Over the course of media reform in the past four decades, economic and technological logic has definitely been significantly adherent to political logic, thereby exerting an influence under the latter’s framework. For example, propaganda has been given a high priority as a function that the Chinese media must perform throughout the process of media reform. Nevertheless, the tension between profiting and propaganda, market and state provides space for the strategic development of the media industries within China.

iMNs from 3 of 6 sporadic lines also had significantly fewer LAMP2+ vesicles than control iMNs, and 3K3A-APC treatment rescued the number of lysosomes in these lines (Figure 2F and Supplemental Figure 2, M and Q). Thus, iMNs from some, but not all sporadic ALS lines display low lysosome numbers. However, for those that do show low lysosome numbers, 3K3A-APC can rescue this phenotype.
La Jolla, Jiāzhōu — Wénlín Yánjiūsuǒ SPC yǒuxiàn gōngsī xuānbù Axel Schuessler bóshì de «Gǔdài Hànyǔ Zìyuán Zìdiǎn ‧ Wénlín Diànzǐ Bǎn» (ABC Etymological Dictionary of Old Chinese, Wenlin ABC EDOC), jí Wénlín Hànyǔ Xuéxí Ruǎnjiàn 4.3.2 Wánzhěngbǎn (Wénlín Wánzhěngbǎn) de zìdiǎn chājiàn xiànyǐ fābù. Wénlín ABC EDOC chājiàn wánquán jíchéngle Wénlín ABC Cídiǎn, shòujià wéi $59, zài 2016 nián 10 yuè 1 rìqián gòumǎi jǐn xū $29. Zài Wénlín ABC EDOC zìdiǎn chājiàn fābù qiánbùjiǔ, wǒmen hái fābùle Wénlín ABC HDC, zhè shì yī kuǎn àn zìmǔ shùnxù suọ̌yǐn de «Hànyǔ Dà Cídiǎn» ruǎnjiàn bǎn, yóu Victor H. Mair (biānjí) biānzuǎn. Wénlín 4.3.1 bǎn de yònghù kě miǎnfèi shēngjí zhì 4.3.2 bǎn.
Wo chuan shàng yifú, kaiche dào gelúnbiya gaodì. Méiyou rén zài zhidìng de jiaoluò dengdài. Wo kaiche shiguò gai dìqu yiduàn shíjian, tíng xiàlái, zou huí jiaoluò. Zuìhòu, yi míng nuzi yuèguò gaosù gonglù yíngjie wo. Shì de, shì ta. Zhulì'an hé wo huí dàole wo de che. Wo gàosù ta, wo huì ba ta dài dào shèngbaoluó. Women kaishi cháo zhège fangxiàng xíngshi. Bùkesiyì de shì, zhulì'an ránhòu shuo, ta bùxiang qù shèngbaoluó. Ta ràng wo ba ta dài huí dào women jiànmiàn de jiaoluò li. Ta xià chele, yaoqiú $ 5.00. Wo gei ta qián
Wo gai zenme bàn? Jixíng baobao de kenéng xìng hé duì wo qi zi jiànkang de kenéng de fùmiàn yingxiang shì bùxiáng de. Wo xiang, rènhé yiliáo chéngxù dou you fengxian; shénme shì cuòwù de kenéng xìng? Wo gei yisheng fale yi feng diànzi yóujiàn, nèiróng you bùfèn nèiróng:“Jintian wo qizi shuo ni gàosù ta, huáiyùn qíjian kenéng huì siwáng. You duo kenéng? Rúguo wo de qizi miànlín yánzhòng de siwáng fengxian, nàme women dangrán huì juédìng bù xíngdòng. Dànshì, wo bù huì genjù yiban xìng de chénshù zuò chu juédìng, ér shì yào gèng duo de liaojie wo qizi de jiànkang fengxian.“
 Zài rènhé changsuo, guanzhòng xiang yào yanzòu shanshuò de jiézòu. Tamen xiang yào ganxìng de biaoyan - dàdan de zhanlan, yiqiè sìhu dou zhèngquè - tamen zànshang keyi tígong zhè zhong tíshì de biaoyan zhe. Tamen pèifú yùndòngyuán, jinguan chongtú de yalì, keyi yíngdé guànjunsài; huò keyi zài baozhuang de tiyùchang nèi jifa guanzhòng de liúxíng geshou; huò xijù yanyuán zài diànshì jiémù zhong de zhèngquè jiechù. Zài rènhé biaoyan fangshì, gongzhòng jìngpèi biaoyan zhe shuí keyi ràng zìji de changhé, bìng gei chu yigè hao de biaoyan, dang ta de zhòngyào.

Xila yu shènglùyìsi de lì nà de péngyou zài yiqi. Ta zài nàli shengbìngle, bùdé bù qù yiyuàn. Xila shuo, pèi sen de xinzàng zài nà duàn shíjian jihu tíngzhile tiàodòng. Suirán liang rén dou nénggòu huifù, dàn Payson xiànzài de tizhòng bùzú, ér Sheila de bèibù geile ta hen dà de tòngku. Ta maile yigè dà guahào lái ràoguò. Xìngyùn de shì, yisheng gàosù xila, ta xuyào chifàn, huafèi dàliàng de shíjian shuìjiào. Fanhuí mìsuli zhou de luxíng yi quxiao.


Lāqiáolā (La Jolla), Jiālìfúníyà zhōu—Zhōngwén Xuéxí Ruǎnjiàn Wénlín hé CDL zìtǐ jìshù de kāifā shāng——Wénlín Yánjiūsuǒ xīn tuīchū de «Hàn-Yīng yànyǔ cídiǎn» ruǎnjiàn bǎn xiànyǐ zhīchí fántǐzì, cídiǎn yóu Yuēhàn Luōsēnnuò (John S. Rohsenow) biānjí. Xiàndài yǔyán qīkān duì Luōsēnnuò (Rohsenow) cídiǎn de píngjià shì “ dàigěi rén yúkuài tǐyàn, yìyú shǐyòng ... Wèi pǔtōng Yīngyǔ dúzhě kāiqǐle Zhōngguó mínjiān zhìhuì de bǎokù ... duì rènhé jíbié de yǔyán xuésheng hé rènhé xūyào jīngpì géyán de rén dōu shìjí jù xīyǐnlì qiě shífēn shòuyì de” (89, 2005). Yóu Wénlín Yánjiūsuǒ (zhǐ zhì bǎn de biānzhì zhě) kāifā de xīnbǎn ruǎnjiàn wèi xuéxí yànyǔ zhè yī bǎoguì zīyuán zēngtiānle xīn de wéidù. Gāi ruǎnjiàn bǎnběn yīng yǔ Wénlín Hànyǔ Xuéxí Ruǎnjiàn 4.1 huò gèng gāo bǎnběn jiéhé shǐyòng. Yōngyǒu Wénlín qiángdà de ABC Diànzǐ Cídiǎn de quánbù jíhé, yìwèizhe jiǎntǐ hé fántǐ Zhōngwén de dúzhě kěyǐ shíshí fǎngwèn gèzhǒnggèyàng de cítiáo yǐ tànqiú Luōsēnnuò jiàoshòu jīngliáng fānyì de wēimiào zhī chù, bìng lǐjiě Zhōngwén yànyǔ gèng shēnkè de hányì. Shìyòng yú suǒyǒu liúlǎnqì de bǎnběn zhèngzài jījí kāifā zhōng. Zhè yī xīn diànzǐ bǎn de shòuzhòng wèi pǔtōng Yīngyǔ hé Hànyǔ dúzhě, yǐjí rénlèixué, yǔyánxué, wénxué, shèhuìxué, xīnlǐxué, lìshǐxué zàinèi de gèzhǒng lǐngyù de zhuānjiā. Xīnbǎn Wénlín 4.2 huò gèng gāo bǎnběn de ruǎnjiàn kě fǎngwèn https://www.wenlinshangdian.com wǎngshang gòumǎi, shòujià wèi 19.99 Měiyuán. Zuìjìn yóu Xiàwēiyí Dàxué Chūbǎnshè chūbǎn de «ABC Hàn-Yīng Yànyǔ Cídiǎn» bāohánle yuē 4000 duō tiáo Hànyǔ yànyǔ, gēnjù Hànyǔ Pīnyīn zhuǎnlù hé Hànzì (biāozhǔn jiǎntǐ), ànzhào yànyǔ shǒucí (詞/词 cí) de zìmǔ shùnxù páiliè, fùdài de Yīngwén shūmiàn zhíyì (rú bìyào yě huì cǎiyòng yìyì). Qítā nèiróng bāohán: jiǎnyào yòngfǎ zhùshì, láiyuán, bìngxíng biǎodá, cānzhào yǐnyòng yǐjí yìngyòng shílì. Chúle yànyǔ zhīwài, zìdiǎn hái dàiyǒu guānjiàncí suǒyǐn (Zhōng-Yīngwén), bāokuò suǒyǒu shèjí de cítiáo hé huàtí. Biānzhě duì zhèxiē yànyǔ zài chuántǒng yǔ dāngdài Zhōngguó shèhuì zhòngdì dìngyì, jiégòu, yòngtú hé lìshǐ jìnxíngle xuéshù jièshào, lièchūle wénxiàn jí hé xiāngguān yànyǔ de xuéshù yánjiū.

16 Expertise is defined as a source's “presumed knowledge and ability to provide accurate information.” See Petty, R. and Wegener, D., Attitude Change: Multiple Roles for Attitude Change (Boston: McGraw-Hill, 1998), p. 344. Objectivity refers to perceptions of media sources to be unbiased, accurate, fair and “to tell the whole story.” See Iyengar, S. and Kinder, D.R., Psychological Accounts of Agenda-Setting (Beverly Hills: Sage, 1985); Miller, J. and Krosnick, J., “News media impact on the ingredients of presidential evaluations: politically knowledgeable citizens are guided by a trusted source,” American Journal of Political Science, Vol. 44, No. 2 (2000), pp. 301–15.

Yóuyú zhè cì yùndòng jìngrán churényìliào, suoyi wo xiànzài danrèn mínzhudang zongtong. Zài DNC zhuxí zài nán kaluóláinàzhou quxiao zigé hòu, wo zài 2004 niándù dùguòle wu gè xingqí, zài lùyìsi an nà zhou luxíng, yu guójia mínzhudang zongtong xiaozu zhong de liù míng zhimíng hòuxuan rén jìngzheng. Zài zhè cì bisài zhong, wo yíngdéle hòuxuan rén zhong de dì wu míng, yíngdéle 2%de xuanpiào. Yi xingqí qián suodìng tímíng de yuehàn·kè li (John Kerry) shouxian wánchéngle tímíng.
Chongman yíwèn, wo xiàng fóluólidá zhou Clearwater zhensuo de zhuguan fasòngle yi feng diànzi yóujiàn, gai wangzhàn de Sheila céngjing xianshìguò wo de wangzhàn. Ta huídá shuo, zhensuo yu xila méiyou rènhé yèwù guanxì. Xianrán wo bèi piàn liao dàng wo miàn duì xila shí, ta shuo jìhuà you yigè zuìhòu yikè de biànhuà. Qíshí zhège chéngxù shì zài luo lì bei kaluóláinà dàxué yiyuàn wánchéng de. Rán'ér, zhè jia yiyuàn de wangzhàn méiyou liè chu shuluanguan jiéza de nìzhuan shì qí tígong de yiliáo fúwù zhi yi. Zài ji zhou zhihòu, yu xila de fènnù de diànzi yóujiàn jiaoliú zhihòu, wo xiangxìn xila yijing qi piànle wo.
On the event of the shipwreck in the Yangtze River last year, I sent (passengers’ identity numbers) to the editor-on-duty of the website. He said, ‘Tell me the number of (Fuzhou) people’. I told him he could roughly estimate the number by counting those identity numbers starting with ‘35’. He said, ‘You might as well help me count’. I was being busy on the spot. And I was expected to be the one managing such trivial matters! (Interviewee No. 14)
Wénlín 4.2 fābù de tóngshí, gōngsī wǎngzhàn de zhěngtǐ chóngxīn shèjì yě jiēzhǒng'érlái, xīn wǎngzhàn bāohán le Hànyǔ Pīnyīn, jiǎntǐ, fántǐ xíngshì de fānyì. Wénlín 4.2 Bǎn kě zài wǎngshàng (wenlinshangdian.com) shēngjí, shēngjí fèiyòng jǐn shí Měiyuán, yòngyú zhīchí chǎnpǐn kāifā. Wénlín zuìjìn fābù de Yuēhàn Luósēnnuò biānjí de “Hàn-Yīng Yànyǔ Cídiǎn” ruǎnjiàn de fùfèi yònghùmen: Hànyǔ Yànyǔ ABC Cídiǎn (Hàn-Yīngyǔ Cídiǎn), yě kě zài wǎngshàng yǐ 19.99 Měiyuán gòumǎi, hái jiāng miǎnfèi huòdé Wénlín 4.2 shēngjíbǎn.
We thank the NINDS Biorepository at Coriell Institute for providing the following cell lines for this study: ND12133, ND03231, ND01751, ND11976, ND03719, ND00184, ND5280, ND06769, ND10689, ND12099, ND14954, ND08957, ND12100 and ND014587. We thank H. Chui and C. Miller (University of Southern California Alzheimer's Disease Research Center) and N. Shneider (Columbia University Medical Center) for control and C9ORF72 patient tissue. We thank the Choi Family Therapeutic Screening Facility for chemical screening support and the Translational Imaging Center at USC for imaging support. We thank M. Koppers, Y, Adolfs, C. van der Meer and M. Broekhoven for help with mouse breeding and kainate injection experiments. We thank S. Waguri (Fukushima Medical University) for providing the M6PR-GFP construct. We thank C, Buser for assistance with electron microscopy. We also thank S. Alworth (DRVision Technologies), K. Hebestreit and R. Bhatnagar (Verge Genomics), B. Baloh (Cedars Sinai Medical Center), J. O'Rourke (Cedars Sinai Medical Center), C. Donnelly, C. Tong, A. McMahon and Q. Liu-Michael for reagents, technical support and discussions. E.Y.S. is a Walter V. and Idun Berry Postdoctoral Fellow. K.A.S. was supported in part by a Muscular Dystrophy Association Development Grant. L.M. was supported by NIH grant T32DC009975-04. This work was supported by NIH grants AG039452, AG023084 and NS034467 to B.V.Z. R.J.P. was supported by grants from ALS Foundation Netherlands (TOTALS), Epilepsiefonds (12-08, 15-05), and VICI grant Netherlands Organization for Scientific Research (NWO). This work was also supported by NIH grants R00NS077435 and R01NS097850, US Department of Defense grant W81XWH-15-1-0187, and grants from the Donald E. and Delia B. Baxter Foundation, the Tau Consortium, the Frick Foundation for ALS Research, the Muscular Dystrophy Association, the New York Stem Cell Foundation, the USC Keck School of Medicine Regenerative Medicine Initiative, the USC Broad Innovation Award, and the Southern California Clinical and Translational Science Institute to J.K.I. J.K.I. is a New York Stem Cell Foundation-Robertson Investigator.
×